Gronau, Q. F., & Wagenmakers, E.-J. (2019). Limitations of Bayesian leave-one-out cross-validation for model selection. Computational Brain & Behavior, 2(1), 1–11.
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009). Model assessment and selection. In
The elements of statistical learning: data mining, inference, and prediction (pp. 219–259). Springer Series in Statistics. Springer, New York, NY.
https://link.springer.com/chapter/10.1007/978-0-387-21606-5_7#preview
Navarro, D. J. (2019). Between the devil and the deep blue sea:
Tensions between scientific judgement and statistical model selection.
Computational Brain & Behavior,
2(1), 28–34.
https://doi.org/10.1007/s42113-018-0019-z
Shmueli, G. (2010).
To Explain or to Predict? Statistical Science,
25(3), 289–310.
https://doi.org/10.1214/10-STS330
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432.
Vehtari, A., Simpson, D. P., Yao, Y., & Gelman, A. (2019). Limitations of “Limitations of Bayesian leave-one-out cross-validation for model selection.” Computational Brain & Behavior, 2, 22–27.