Barocas, S., Hardt, M., & Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities. MIT Press.
Bernardo, J. M., & Smith, A. F. (2009). Bayesian theory (Vol. 405). John Wiley & Sons.
Blanchard, T., Lombrozo, T., & Nichols, S. (2018). Bayesian Occam’s razor is a razor of the people. Cognitive Science, 42(4), 1345–1359.
Bürkner, P.-C., Scholz, M., & Radev, S. T. (2023). Some models are useful, but how do we know which ones? Towards a unified bayesian model taxonomy. Statistic Surveys, 17, 216–310.
Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48), 30055–30062.
Dubova, M., Chandramouli, S., Gigerenzer, G., Grünwald, P., Holmes, W., Lombrozo, T., Marelli, M., Musslick, S., Nicenboim, B., Ross, L., Shiffrin, R., White, M., Wagenmakers, E.-J., Bürkner, P.-C., & Sloman, S. J. (2024).
Is Occam’s razor losing its edge? New perspectives on the principle of model parsimony.
https://doi.org/10.31222/osf.io/bs5xe
Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian workflow.
arXiv.
https://arxiv.org/abs/2011.01808
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009). Model assessment and selection. In
The elements of statistical learning: data mining, inference, and prediction (pp. 219–259). Springer Series in Statistics. Springer, New York, NY.
https://link.springer.com/chapter/10.1007/978-0-387-21606-5_7#preview
Holland, P. W., & Wainer, H. (2012). Differential item functioning. Routledge.
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688.
Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146.
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems, 33(4), 1452–1466.
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Koethe, U., & Buerkner, P.-C. (2023).
JANA: Jointly amortized neural approximation of complex bayesian models.
The 39th Conference on Uncertainty in Artificial Intelligence.
https://openreview.net/forum?id=dS3wVICQrU0
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59.
Schneider, E. B. (2020). Collider bias in economic history research. Explorations in Economic History, 78, 101356.
Schwab, S., & Held, L. (2020). Different worlds confirmatory versus exploratory research. Significance, 17(2), 8–9.
Stanojevic, A. (2023). Algorithmic governance and social vulnerability: A value analysis of equality, freedom and trust. Available at SSRN.
Theisen, M., Lerche, V., Krause, M. von, & Voss, A. (2021). Age differences in diffusion model parameters: A meta-analysis. Psychological Research, 85, 2012–2021.
Vinding, M. C., Lindeløv, J. K., Xiao, Y., Chan, R. C., & Sørensen, T. A. (2018). Volition in prospective memory: Evidence against differences in recalling free and fixed delayed intentions.
PsyArXiv.
https://doi.org/10.31234/osf.io/hsrbt